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Universal Crossover Behavior of Fluids and 
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A new universal scaled equation of state for one-component fluids, binary 
mixtures, and ionic solutions, which represents the thermodynamic behavior of 
fluids in a wide range of temperatures and densities including the critical region, 
is proposed. Near the critical point this equation reduces to a theoretically 
based scaled equation including the leading nonasymptotic (Wegner) correction 
and a correction accounting for the asymmetry of fluids with respect to the criti- 
cal isochore. Far away from the critical point the new equation goes over into 
the classical Landau expansion (van der Waals equation). The new equation is 
applied to represent experimental P - V - T  data for H20 and CO2, as well as to 
represent C~,x data for dilute aqueous solutions of NaC1. A crossover from fluc- 
tuation to mean-field behavior is observed at increased concentrations of NaCI. 
A universal crossover function for the heat capacity C~.x of one-component 
fluids and binary mixtures is presented. 

KEY WORDS: critical phenomena; crossover equation of state; specific heat; 
aqueous ionic solutions. 

1. I N T R O D U C T I O N  

In accordance with the modern concept of critical phenomena [-1, 2], the 
behavior of the thermodynamic properties in the critical region is deter- 
mined by a distance to the critical point r and the value of the dimen- 
sionless Ginzburg number Gi  = ( l i f o )  ~, where l is the average distance 
between particles, and ~o is the amplitude of the asymptotic critical power 
law of the correlation length 4). At the critical isochore (at T >  To) and 
along the coexistence curve (at T < T c ) ,  the "distance" r = z ,  where 
r = T I T  c -  1 is the dimensionless temperature deviation from the critical 
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temperature T c. In the fluctuation regime (r ~ Gi) the density of the free 
energy per unit volume d = A / V  can be represented in the form of the 
Wegner expansion [3]:  

d=d+/uJ 2 ~ [fo(Uh/.J~)+~i ruJ~'Z(Uh/lUTl~h+ ' 3  (~) 

where A0, u~, and gi are analytical functions of r, while Uh is a function of 
the deviation of the chemical potential from its value on the critical 
isochore A# = (pc~Pc)[#(p, T ) -  #(Pc, T)]. To make the chemical potential 
dimensionless, the critical pressure Pc ad critical density Pc are used. All 
simple fluids and their mixtures belong to the same universality class with 
universal critical exponents cr fi, and 6, universal correction-to-scaling 
exponents di,  as well as universal scaling functions ~.(z) [4]. The case 
Gi,~ z ~ 1 corresponds to the mean-field region in the Landau theory [5] ,  
where the free energy can be represented by an expansion in powers of an 
order parameter At/: 

z~ = ~z~0 .q- Ib/2T Z~ 2 ..]- �88 4 z~  4 (2) 

Here u2 and u4 are system-dependent constants. The order parameter Aq is 
related to the reduced temperature difference z and the reduced density 
difference d p = p / p c - 1  by d~l=dp+B3z,  where B 3 is another system- 
dependent coefficient related to a rectilinear diameter of the coexistence 
curve. The range r " Gi corresponds to a certain intermediate region where 
a crossover from fluctuation behavior at z ~ Gi to the mean-field behavior 
at Gi ~ r ~ 1 takes place. In this region simple power laws are no longer 
valid. Existing estimates for the Ginzburg number [4]  show that for non- 
conducting fluids the entire experimentally attainable range of temperatures 
is related to the crossover behavior. 

The thermodynamic behavior of simple binary mixtures in the vicinity 
of the vapor-liquid critical line has also a universal character and can be 
described on the basis of fluctuation scaling theory and the isomorphism 
hypothesis El, 4, 6, 7]. In accordance with this theory all simple liquids 
and their mixtures belong to the same universality class. This means that 
in terms of the appropriately chosen isomorphic variables, they obey the 
same universal scaling laws with the same universal critical exponents. It is 
essential that in solutions the heat capacity C~,~ at constant chemical 
potential is the value isomorphous to the heat capacity C~ of a single-com- 
ponent liquid, rather than the heat capacity C~,~ at constant molar concen- 
tration x. The heat capacity C~,x remains finite everywhere except at the 
critical points of the pure components. On approaching the critical line of 
a solution the so-called Fisher renormalization of the critical heat capacity 
exponent ~ to - ~ / ( 1 - ~ )  takes place, i.e., there exists an intermediate 
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range of temperatures in which the effective index c~e~ ~- 0. Nevertheless, in 
this case the free energy remains singular due to long-range critical fluctua- 
tions. It is this fluctuation part that determines the peculiar behavior of the 
heat capacity C~,x in the critical region. This conclusion has been confirmed 
by the progress achieved in recent years in describing the isochoric heat 
capacity C~, x of binary mixtures on the basis of universal scaled equations 
of state [8, 9]. A quite different situation occurs in electrolytic solutions 
where the intermolecular potential itself is long range. As a consequence 
the mean-field Landau theory remains valid for Gi ~ ~ <~ 1 [5] with ~L = 0 
and the coexistence-curve exponent /~L = 1/2. In the case that Gi is small 
(Gi ~-10 8-10 so) the singular part of the free energy is negligible in the 
entire experimentally attainable range. The heat capacity of such a system 
is then an analytical function of temperature and density. Values of Gi ~- 
10 2-10-3 correspond to a pretransitional region where a crossover occurs 
from fluctuation behavior of the system (~eff=0.11, z ~ G i )  to mean-field 
behavior with suppressed long-wavelength fluctuations (c%fr=0, r>>Gi). 
Dilute solutions of NaC1 in water can be classified as such a system. As 
noted elsewhere [10, 11 ], even at concentrations x > 0.01% of NaC1 mol 
fractions, the exponent/~ tends to its mean-field value/~ ~- 1/2, and we shall 
find that the experimental P-p T x  data are well described by an analytic 
classical equation of state. 

In this paper, a new crossover equation of state for single- and two- 
component fluids is presented. This equation is developed on the basis of 
an asymmetric equation of state presented previously for one-component 
fluids [12-14] and for binary mixtures [15, 16]. Comparisons with 
experimental P V T  data for steam [17-19] and carbon dioxide [20, 21] 
as well as with specific heat data for dilute solutions of NaC1 in water [22] 
are given. 

2. C R O S S O V E R  E Q U A T I O N  F O R  ONE-COMPONENT FLUIDS 

The crossover equation of state proposed by Albright, Sengers, and 
co-workers [23, 24] is the best justified theoretically. The range of validity 
of this two-term crossover model is substantially larger than that of the 
so-called fundamental equation of state [25] and, on the other hand, 
coincides practically with that of the asymmetric scaled equation of state 
(ASEQ) [12-14]. To represent the thermodynamic properties of fluids 
over a large range of temperatures and densities around the critical point, 
a six-term crossover model was proposed [26J. 

The ASEQ yields a representation of the thermodynamic properties in 
the density range 0.65 < P/Pc < 1.4 along the critical isotherm and in the 
temperature range 0.98<T/Tc<l .2  along the critical isohore and 
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coexistence curve including metastable states. Moreover, ASEQ represents 
such sophisticated effects as the behavior of the line of the isobaric heat- 
capacity maxima in the one-phase region. It allows us to choose the ASEQ 
as a zero approximation rather than the Landau expansion. The ASEQ 
includes the first nonasymptotic term to the Wegner expansion (1) and a 
term accounting for asymmetry with respect to the critical isochore. The 
renormalization-group (RG) theory indicates that the free energy can be 
represented in the form [27] 

d(~, ~ )=  d(~, z3~) 

= Ao W (U2/2)'c~cdz zIrI2"k-(u4/4) UZ2,qrln-(uo/2) 'c2K (3)  

where u 2 and/,/4 are as before constants in the Landau expansion (2), while 
Uo is a new system-dependent constant related to a so-called kernel term in 
the singular part of the free energy. 

The rescaling functions f2, Z, U, and K can be expressed in terms of 
a crossover function Y, 

f2 = y~l, Z =  y~2, U =  y~3, K=' Y K4- 1 (4) 

and the exponents/~1, /~2, /~3, and/s are expressed in terms of the known 
critical exponents xl = ( 2 v -  1)/A, ~2 = -qv/d, ~:3 = v/A, and K~ 4 = - - 0 ~ / f l ,  

where v is the critical exponent of the correlation length 4, the exponent 
defines the long-distance behavior of the correlation function, and d = A1 
in Eq. (1). The crossover function Y is chosen so that in the regular region 
the right-hand side of the relation (3) coincides fully with the Landau 
expansion ( Y = 1 in Refs. 23 and 24), while at ~ ~ 1 the functions 12, U, and 
Z reproduce the Wegner expansion. Introducing the fundamental results 
(3) and (4) into the ASEQ r,12-14], we obtain a new equation which 
incorporates the crossover from the critical behavior to classical behavior 
r,28]: 

d = Pc(R~a(q) r2-~akgta(02 ) + R~n"(q) r2-~+~ck~c(O 2) 

+R~as(q) r2-~+"~ (5) 

with 

Ao(T,p)={(p /po)mo- l+~,r_(p /po)mi+f;]~  i} P~ (5a) 

r = r(1 - 3202) (6) 

dq = dp + B3r = kR~b(q) riCO (7) 



Fluids and Fluid Mixtures in the Critical Region 881 

Here a, k, c, d, f,  f0, mo, mi, and fi  are system-dependent coefficients, A is 
the exponent of the first nonasymptotic term in the Wegner expansion 
[ i =  1 in the expansion (1)], and A , = 7  + / ~ - 1  is the critical exponent of 
the asymmetric term. The universal scaling functions ~ga(02), gtc(02 ), 
7ta(0), and ~ ( 0 )  coincide fully with the corresponding functions in the 
ASEQ [12-14] and are given in the Appendix. The asymmetric term in 
Eq. (5) deals with the "mixing" of the thermodynamic variables in fluids 
and is not related to the incorporation of the term ~ At/5 into the Landau-  
Ginzburg-Wilson Hamiltonian [29]. The value of the asymmetric critical 
exponent Aa-~0.565 slightly differs from the theoretical value A5=0.69, 
which is calculated up to the order e2 (e = 4 -  d; d is dimensionality) [29]. 
This exponent was also calculated up to the order e 3 [30, 31]. It was found 
that the convergence of the expansion is poor and that A 5 could be 
anywhere between 0.5 and 1.5. 

The argument of the crossover function R ( q )  can be rewritten in the 
form 

q = rg ~ rGi  -1  (8) 

Here g is a new system-depended constant connected with the Ginzburg 
number Gi. Since in the parametric representation the distance from the 
critical point is determined by the polar coordinate r, the choice of 
g ~- G i - 1  is the most natural and can be considered to be the definition of 
the Ginzburg parameter in this approach. More rigorous calculations show 
that g~_ Gi 1/2c~. This means that at 5 =  1/2 in accordance with the 
Ornstein-Zernike's approximation, the relation given by Eq. (8) becomes 
valid. Then using the concept of an effective critical exponent for the heat 
capacity, 

eeff(z) = 0 In Cv(r, At/= 0)/c~ in r (9) 

and an effective critical exponent of the isothermal compressibility KT 

?eff(~) = 0 In Kr(z, A~ = 0)/3 In T (10) 

as well as obvious asymptotics for the crossover function R(q): 

lim R(q)=  1, lira R(q)=q (11) 
q ~ 0  q ~ o o  

we obtain 

K'a = ~ ,  K'na = 0~ - -  A ,  /s = 1 - -  /~, Kas=2~+/~ - 1  (12) 

We note that such choice of the exponent teas provides for the transfor- 
mation of the asymmetric term in Eq. (5) to the asymmetric terms in the 
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Landau expansion ~-z2Atl, "~zAtl 3, and ~-Arl 5 at the limit of q~> 1 (see 
Appendix B). Whence it follows that the crossover function R can be 
represented in the form 

R(q) = 1 + q2/(b o + q) (13) 

where bo is a nonuniversal constant of order unity. (In Ref. 28 the 
parameter bo was assumed to be equal to unity.) Equations (5)-(7) in com- 
bination with Eqs. (12) and (13) determine the universal crossover equa- 
tion of state for one-component fluids. This crossover function, Eq. (13), 
and its first and second derivatives are analytic monotonous functions, the 
asymptotic behavior of which at q ~> 5 coincides practically with the 
asymptotic behavior at q--. Go (see Fig. 1). Thus at q--*0 (q~  10 2) 
Eqs. (5)-(7) and ASEQ are fully identical, and at q~> 1 they yield the 
Landau expansion given by Eqs. (2) including asymmetric terms ( ~ 2  Aq, 
~-z Aq 3, ~-AqS). This is best illustrated by the dependence of the effective 
critical exponents c ~  and 7~rf, the isochoric heat capacity C~, and the 
inverse of the isothermal compressibility K~ 1 on the parameter q. Differen- 
tiating Eq. (5) twice with respect to ~ and Ap, we obtain the following 
expressions for Cv and K r  ~ along the isochore in the approximation 
c = d = f = B  3 = 0  

( p c T 2 C v ) / ( P o T ) = A + r - ~ o ( q ) - - ( p c / P c ) ( d 2 A o / & 2 )  (14) 

K T  1 = K~. I / P  c = (a/kg y) [~(q) (15) 

//'/ 

5 ,/z "/ 

,//z yy'/ 

5 R(~ )r 
i\ / /  

Fig. 1. Crossover function R(q) and 
its first and second derivatives R'(q) 
and R"(q) (b 0 = 1) as a function of q. 



Fluids and Fluid Mixtures in the Critical Region 883 

Here A + is the dimensionless amplitude of the asymptotic power law for 
the isochoric heat capacity, and the functions qS(q) and/~(q)  are given by 

r = q ~Oo(q) = q-~R~(q)  R2(q) (16) 

l~o(q)=q~Fo(q)=q~R~-7(q){  1 - [~(7- 1) / (1-  ~ ) (2 -  ~)] qR ' /R}  (17) 

with 
R2(q) = 1 + (2~/(1 --cz))(qR'/R) 

+ (0~q2/(1 - -  ~)(2 - c Q ) .  [ R " / R  - ( R ' / R )  2 (1 - 0~)] ( 1 8 )  

Effective critical exponents %fr(q) and 7~ff(q) can be derived by 
differentiating Eqs. (14) and (15) with respect to temperature [see Eqs. (9) 
and (10)]: 

%fr(q) = ~ - qO'o(q)/Oo(q) (19) 

7~ff(q) = 7 + qFc(q)/Fo(q) (20) 

The effective exponents calculated from Eqs. (19) and (20) are shown in 
Fig. 2. One can see from the curves that when the parameter q increases, 
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the effective critical exponents ~eff and '~eff tend monotonously to their 
mean-field values ~ = 0 and 7 = 1. 

However, the character of this crossover depends on the parameter b0. 
For  bo >~ 0.4, the functions ~efr(q) and y~ff(q) intersect the abscissa when the 
parameter q increases and the critical exponents change their sign at cer- 
tain values of q (different for ~ff and 7~ff). For b0 ~< 0.4, ~ff(q) and 7err(q) 
are smooth monotonous functions of the parameter q. The meaning of the 
parameter bo in the crossover function R(q) becomes clear from the 
behavior of inverse susceptibility K r  I along the critical isochore (p = Pc, 

= 0, q = zg). At large values of the parameter q (see Fig. 3) K~ 1 is a linear 
function of T(KTrl..~ q ~  ~'). However, the dimensionless temperature T' is 
not equal to the dimensionless temperature T in the critical region 

z ' = ( T - - T ' c ) / T ' c = T - & ' ~ ( T - T c ) / T c - r T ' c / T ' c  (21) 

because the temperature T' c differs from the true critical temperature To, 

T'o = To + fiT" (22) 

The function (2 takes into account the critical temperature shift in the 
crosover equatios ( 3 ) a n d  (4), 

~' = TI2 (23) 

This is easy to derive in our approach, where Y= [q/R(q)] ~ and 

f2(q) = y(2v-1)/~(q)= [q/R(q)]2v 1 (24) 

t 2 

c,V~ 0.5 i, O 

V 
Fig. 3. Crossover function for the inverse susceptibility /~c(q)= 
K~akgT/a  along the critical isochore as a function of q: 1--asymptotic 
law /~o(q) = qr; 2--values of /~c(q) predicted by Eq. (17); 
3--asymptotic law f l ' j q ' )  = q', q' = q - 6q' (rq '  = g 6T ' /Tc ) .  
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Expanding s into power of q 1 and retaining the first term in the 
expansion for large q, we obtain from Eqs. (13) and (24), 

r ' =  r - (1 - bo)(2v - 1)/g (25) 

The expression for 6T~ follows from a comparison of Eq. (25) with the 
Eqs. (21) and (22): 

6T'c = (1 - bo) (2v-  1) T~/g (26) 

That  is, the transfer from the fluctuation region to a regular one results not 
only in changes of the effective exponents but in the renormalization of the 
critical temperature, Eq. (21). At b 0 < 1, 6To > 0, and the true critical tem- 
perature Tc < T'c is consistent with that resulting from the RG theory [--32]. 

In this work, Eqs. (5)-(7) have been used to represent experimental 
P-V-T data of steam and carbon dioxide in a broad range around the 
critical point. The critical parameters of steam and carbon dioxide as well 
as the values of the adjustable constants are listed in Table I. The critical 
exponents have been fixed at the values ~=0.11, /3  =0.325, and A =0.5 in 
agreement with the theoretical predictions. Comparisons of experimental 
pressure data for steam [-17 19] and carbon dioxide [20, 21] with the 
values calculated from the crossover equation of state and van der Waals 
equation are presented in Figs. 4 and 5. To obtain the parameters of the 
van der Waals equation the experimental values of the critical temperature, 

Table I. P a r a m e t e r  Values  in the Crossover  Equa t ions  (5) - (7)  

for Steam and  C a r b o n  Diox ide  

H 2 0  C O  2 

f l  - 7.769 - 6.967 

f2 20.09 20.13 

f3 29.09 - 0.408 

f4 - 70.37 6.276 

a 21.4 20.01 
c -- 1.342 - 2.32 

d 11.59 12.52 

f - 1 9 . 8 3  - 1 6 . 5 7  
k 1.417 1.198 

B 3 - 0 . 6  - 0 . 6 5  
g 1 0.5 

bo 0.3 0.3 
Pc 22.05 M P a  7.375 M P a  
Pc 322.778 kg  . m  -3 466.5 kg  . m  3 

Tc 647.067 K 304.126 K 

840/12/5-8 
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Fig. 4. Isotherms of H20 in the critical region: 
1, T/Tc=I.O00; 2, 1.071; 3, t.156; 4, 1.195. The solid 
curves generated by Eq. (5); the dashed curves, by van 
der Waals equation. The symbols represent the 
experimental data [17-19]. 

critical density, and critical pressure of steam and carbon dioxide were 
used. It  is seen that the crossover model proposed in this paper represents 
P-V-T data over a larger temperature range than scaled equations for- 
mulated before [ 12-14, 23-25 ]. For  example, the experimental P - V - T  date 
for CO2 at the critical isochore are reproduced within a temperature range 
up to 1.3 To. With regard to the density range it was found to be 
0.6 ~< P/Pc <~ 1.4 at T =  To, and therefore it coincides with the range for the 
ASEQ [12, 14]. 

3. C R O S S O V E R  IN BINARY MIXTURES 

The approach developed in the previous section may be extended to 
binary mixtures. For  this purpose additional universal scaled functions 
�9 (~) and ~1(r must be introduced into Eqs. (5)-(7) [-28], so that 
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[ 
J(T, p, x)  = Pc ~akrZ-~R~(q) ~(~b) Wa(02) + ckr2-~ + ~R~-  ~(q) ~/c ( 0 2 ) 

+ kr 3 fl+2~R2~+,-1/2(q)EdTa(O) +fTt f (0) ]  

+ (P/Pc) m o -  1 + ~, [(P/Pc) m i + L ]  ~i} (27) 

Here the polar coordinates r and 0 are related to the dimensionless density 
Ap(x)  = p/po(x) - 1 and temperature z(x) = T/To(x)  - 1 

Ap(x )=kr~R1/Z-~(q )  ~1(~bl)0, z(x) = r(1 -bZO 2) (28) 

The universal scaling functions 7Ja(02), We(02), Wa(0), and ~ff~(0) coincide 
with the corresponding functions for a single-component fluid given in the 
Appendix. The crossover functions ~(~b) and ~b~(r are also given in the 
Appendix and take into account the Fisher renormalization in solutions 
and agree with the corresponding functions in earlier papers E9, 15]. The 

5 ~ 5 

5 0 0  ' z~ 

2o0 / G'" / , /  / ' ,~  / > /.."..'/., 
/ / / / 

iO0 / / ..-- .- z 

Fig. 5. Isotherms of CO 2 in the critical region: 
1, T/T c = 1.000; 2, 1.061; 3, 1.145; 4, 1.226; 5, 1.375. The 
solid curves generated by Eq. (5); the dashed curves, by 
van der Waals equation. The symbols represent the 
experimental data [20, 21]. 
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parameter O=r~  ~/~ determines the renormalization of the heat-capacity 
critical exponent ~, while the parameter ~b~ =r~a/~ determines the renor- 
malization of the compressibility critical exponent 7. The parameter ~ is 
given by 

~1 = (Po ToPcR)(a /kx (1  - x ) ) [ ( d P r  - (dTo/dx)(SP/ST)xr -2 (29) 

where R is the universal gas constant. For r ~ 0 and ~b >> 1, the function 
~(~b) -~ 1 and the heat capacity C,,x = -T(~32A/c3T2)p,x behaves as that of 
a pure substance: 

C~,~ ~- ak?(? - 1)/(2c~b 2) r -~ - 2(m2 + f2 )  (30) 

At ~b ~ 1 the renormalization ~ ~ -~/ (1  - ~) takes place, and for r ~ 0 the 
singular part of the heat capacity tends to a finite value 

~ C v , x ] s i n g  ~" 2ak~ - ak~ (2- ~)/(1- ~)r~/(1- ~) ,~ 2ak~ (31) 

which at ~ ~ 0 also tends to zero. For Gi ~ r ~ 1 (i.e., in the case of small 
of the Ginzburg number), a crossover from the fluctuation behavior to the 
mean-field behavior with suppressed long-wavelength fluctuations of the 
order parameter is to be found. The function R(q)  takes into account this 
crossover, where bo(x) is a nonuniversal constant and g ( x ) ~ - G i ( x ) .  At 
q ~ 1 (g < 1) the function R ( q ) ~  1 and for r ~ 0 the heat capacity tends to 
infinity in accordance with Eq. (30). At q >> 1 (g >> 1) the function R(q)~-  g, 
the effective exponent ~eff tends to zero and the heat capacity C~,x remains 
finite. These two types of renormalization are possible depending on the 
values of the parameters ff and g. In the case of ~/~ ~> 1 and g ~< 1 the Fisher 
renormalization takes place ~ - ~ - a / ( 1 - ~ ) .  The parameters a and k 
remain finite, and in first approximation they can be calculated from their 
quantities for the pure components: 

k = k o ( 1 - x ) + k l x ,  a = a o ( 1 - x ) + a l x  (32) 

In the case of (1/~ >> 1 and g >> 1 the crossover from scaling to mean-field 
behavior occurs and eeff ~ 0. 

4. APPLICATION TO IONIC AQUEOUS SOLUTIONS 

In order to understand this type of renormalization the analysis of the 
experimental heat capacity Cv, x data [-22] for NaC1 aqueous solutions has 
been performed in two stages. 

First, the parameters a, c, d , f ,  f 3 , f 4 ,  m2, and m3 of Eq. (26) have been 
found for each concentration by the method of least-square. We assumed 
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the parameter  g to be equal to zero [R(q) = 1] and the parameter  ~1 to be 
equal to infinity (~1 ~ o% ~bl ~ ~ ,  41 ~-1). Initially the parameter  ~ was 
estimated from [-16] 

= (RTcp~/Po)[2a(1 - ~ )  b2T~/akT(7-  1)x(1 - x ) ] ( d T o / d x )  -2 (33) 

Here the values of the parameters a and k have been found from Eq. (32) 
and we have used experimental data [22] to evauate the derivative 
(dTc/dx) (see Fig. 6). The values of the parameter  ~, thus determined for 
the aqueous solution of NaC1, are presented in Table II. 

Then the value of the parameter  ~ was refined by trial and error from 
the condition of the best description of the whole experimental data set. 
The critical exponents were again fixed at the theoretical values e = 0.11, 
fi = 0.325, and A = 0.5. It can be seen in Fig. 7 that a sharp decrease in the 
value of the parameter  a is observed when the concentration increases. And 
at x > 0.247 % mol fractions NaC1 it becomes practically equal to zero. The 
analysis shows that the qualitative dependence of the parameter  a on con- 
centration does not change for magnitudes of the parameter  ~ in the inter- 
val 1 ~ ~ ~ 10. This means that the Fisher renormalization is lacking and a 
crossover of the isochoric heat capacity from fluctuation behavior to mean- 
field behavior takes place. For the description of the crossover behavior in 

650 

o 

o - f  
o - 2  
I - 3  
n - Z  I 

BSO 

S55 

0.155 O.MO 

X, mot Z 

Fig. 6. The critical temperature of NaC1 aqueous 
solutions versus concentration of NaCI: 1, Ref, 36; 
2, Ref. 37; 3, Ref. 38; 4, Ref. 39; 5, Ref. 33. 
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Table II. Parameter Values in the Crossover Equation (27) for the N a C 1 - H 2 0  System 

x, t oo l% N a C I  

Parameter 0.0925 0.154 0.247 0.3 !0 

To, K 652.4 654.44 658.12 661.09 

Pc, k g . m  3 341.6 354.6 361.7 367.4 

a ~ 20.3 1,3 0.2 0.005 

c a - 24.0 6.8 3.8 34.8 
d a - 29.4 18.2 7.4 - 24.0 

f ~  68.1 - 3 6 . 1  - 8 . 5  - 1 3 2 . 7  

f2 ~ 0.2 9.0 --0.2 - 2 2 . 5  

f3 ~ 87.3 71.9 67.9 - 54.7 
f4 a 436.0 --366.0 - 2 5 8 . 0  - 3.3 

m2 a 62.8 - 58.9 -- 54.2 25.8 

m3 a - 3 9 6 . 9  317.5 191.8 52.5 

(dTc /dx )  (33) 3700 3200 2900 2700 

(33) 5.8 4.5 3.5 3.4 

~To  m a k e  these parameters dimensionless, the critical pressure P c = 2 2 . 0 5  M P a  of H 2 0  is 
used. 

the second stage of calculation, we assumed c = d =  f =  0. The parameters 
and ~1 were fixed at values as calculated above, the parameters a, f2,  f3,  

m2, and m 3 were determined by a least-squares fit, while the parameter g 
was found by trial and error. In this case a sharp increase in the parameter 
g is observed alongside with a certain insignificant decrease in the 

20 

x 

\x\\\\\ 

~0 20 5'.0 

X, tO 3 

Fig. 7. The parameters a and g as function of the 
concentration: l - - g = 0 ,  ~ is varied in the interval 
1 ~<(~< 10; 2 and 3--~ is calculated by Eq. (33), g is 
varied. 
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? 

,-;.- 

t~ 

6 

. I  {, �9 �9 

-5.5 -5.0 -2.5 -2.0 -r 

Fig. 8. The specific heat C~ along critical isochores: 
1, x =0.0925; 2, 0.154; 3, 0.310% of NaC1 mol fractions; 4, pure 
H20.  The data points are experimental values and the solid 
curves represent calculated C~ values. 

2. ~ ~  

t.O 

, i i 

- 4 . 0  - 3 . 0  -2 . 'o  - o t.'0 

Fig. 9. The universal crossover function for the specific heat ~.~(q) 
along the critical isochore as a function of the parameter q at b0 = 0.3: 1, 
2, and 3--aqueous solutions of NaC1 at X =  0.0925, 0.154, and 0.310 mol 
fractions; 5--Ar;  6 ~ C H 4 ;  7 - -C2H G 8 - - C O  G 9 - - 0 2 ;  10~corresponds 
to values calculated by Eq. (34). 
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parameter a (see Fig. 7). It confirms the fact that with increasing concentra- 
tion, a crossover from scaling behavior to mean-field behavior occurs. Best 
of all it can be illustrated by the universal crossover function of the heat 
capacity Cv, x on the critical isochore. Since ~b >> 1 in our case, one can 
assume ~(~b)= 1. Then double differentiation of Eq. (26) with respect to 
temperature in the approximation c = d =  f = 0 gives 

poCv T ~ / T =  Pc{ak?(7 - 1)/(2~b 2) qScv(q ) - 2(m 2 -k-f2 ) 

- 6(m3 + f 3 ) r  - 12f4 z2 } (34) 

where the function q~c,(q) is represented by Eq. (16). A comparison of the 
values calculated from Eq. (34) and with the experimental data is presented 
in Figs. 8 and 9. It is seen from Fig. 9, then, at q > 1 the function ~c~ tends 
to finite value, which corresponds to the kernel term of Eq. (3). 

5. CONCLUSION 

In this paper the character of the behavior of pure substances and 
dilute aqueous solutions of NaCI in the critical region is analyzed on the 
basis of a new universal crossover equation of state. The investigation 
shows that the Ginzburg parameter (Gi = g - 1 )  is of the order of unity for 
pure substances and there is no region of applicability of the Landau 
(mean-field) theory in this case. The entire range of temperatures under 
investigation (0~<z~<0.3) corresponds either to the fluctuation regime 
('C <~ 10 -2) or to the crossover regime (10-2~< "C ~< 0.3). On the other hand, 
in dilute aqueous solutions of NaC1 the character of behavior of the 
isochoric heat capac i ty  Cv, x at the near-critical isochores varies 
qualitatively with increasing salt concentration. In the NaCI -H:O system 
a crossover occurs from fluctuation behavior at 0 ~< x ~< 0.247 to mean-field 
behavior at x~>0.247 mol fraction NaC1 with suppression of long-wave 
fluctuations of the order parameter (aofr = 0). 

It should be noted that this conclusion has not found an unequivocal 
corroboration in the results of the latest investigations of the coexistence 
curve for the NaC1-H20 system in the critical region [34, 35]. Thus the 
problem of the character of the critical behavior of dilute arouse solutions 
of NaC1 remains open. The final resolution on this problem can be drawn 
after constructing a global crossover equation of state and applying it to a 
consistent representation of both P - V - T  data and caloric-property data of 
NaC1-H2 O in the critical region. In this connection accurate experimental 
P - p - T - x  data in a broad region around the liquid-vapor critical line need 
to be obtained. 
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A P P E N D I X  A 

~ r  2 )  = - -  (1/2b4)E2fl(b 2 - 1)/(2 - c~) + 2fl(27 - 1)(1 - b202)/~(1 - ~) 

+ (2/3 - 1)(1 - b202)2/c~] (A1) 

~o(02) = E 1/(2b2)(1 - ~ + 3)3  

�9 E(? + A ) / ( 2  - c~ + A )  - (1 - 2/3)  b2023 ( A 2 )  

!Pd(0) = 0 - (2/3)(e - / 3 )  b203 + (1 - 2/3)/(5 - 2e) elb405 (A3) 

bur(0) = (1/3) b203 + (1 -2 /3 ) / (5  - 2 e )  e2b405 ( a 4 )  

= f~  { 2 - f[s ~/(1 ~)3 } ( a 5 )  

where f~(~b) = ~b/(1 + ~b) and ~b = r(x) ~/~. 

4~(qh) = Eqh/(1 + @1)3 7/2 (A6) 

with ~b 1 = r(x) ~lln. 

A P P E N D I X  B 

Let us introduce a new function, 

G(q) = q-~R(q) (B1) 

and replace the function R(q) in Eq. (7) by Eq. (B1). Then f rom Eqs. (6) 
and (7) it follows that  

02 = (At/2/k2rgl 2~) G2~- l(q) (B2) 

r = ~ + (b 2 Atl2/k2g 1-2~) a 2 ~ -  l(q) (B3) 

Subst i tut ion of Eq. (B2) into Eq. (5) with account  of the correlat ions 
(A1)- (A4)  for the function ~a ,  ~uc, ~ud, and g~f yields 

= . 3 o +  (1/2) a275 At/2 G ~+2~ l(q) + (1/4) a 4 z~t/4 GC~+4/~-2(q) 

_ ( a 0 / 2 )  ~2 [ G ~ ( q )  _ 1 ] - ( a o / 2 )  z 2 + d l  ~.2 A t / G  2/~ + 2~-1(q) 
+d3,t. At/3 G2e+4/~ 2(q)+dsAq5 G2~+6/~ 3(q) (B4) 

with 

ao = Eakg~7(7 - 1 )/eb2(1 - ~)(2 - e ) ]  { 1 - (c/ag z) G-Z(q) 

x E~(7 + A ) ( 1  - ~ ) ( 2  - ~ ) ] / 7 ( 7  - 1) 

x ( 1 - e + A ) ( 2 - e + A ) }  (Bs) 
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a2 = ( 2 a f l / k b 2 g l  - 2 ~ -  ~){ [2(b 2 _ 1 )/(2 - ~) + (27 - 1 )/7(1 - a) ] 

+ [ c b 2 / 2 a g ~ ( 1  - ~ + A)]  

• [-2(~, + 3 ) / (2  - ~ + 3 )  + (I - 2fl)] G - 3 ( q ) }  (B6) 

a4 = [ 4a[3(b 2 - 1 ) / k 3 g  2 - 4 , -  ~(2 - ~)3 

• { 1 + Ecb2(2 - ~ ) /2ag~p(b  2 -  1 ) .  (1 - ~ + 3 ) 3  

x [(7 + 3 ) / (2  - ~ + 3 )  + (1 - 2/~)] G - ~ ( q ) }  (B7) 

d l  = d g  2/~ + 2~ -  1 (B8) 

d3 = ( d b 2 / 3 k 2 g  2 - 4 / ~ -  2~)[ 6 + 2/~ - 2e + ( f / d ) ]  (B9) 

d5 = (dbZ /kag3  6, 2~)[ 1 _ ( 2 / 3 ) ( e - / ~ )  + (1 - 2fi) el/(5 - 2e) 

+ ( f / d ) ( 1 ~ 3 )  + (1 - 2fl) eS(5  - 2e)]  (B10) 

F r o m  (B4) and (B5)- (B10)  for q>> 1 [G(q)  = 1], Eq. (B4) is now given by 

= 40 - (1/2) ~0 z2 + 1/2fizz 3 q  2 + 1/4~ 43~/4 

+ d 1 z 2 3 q  + d 3 z A?I 3 + d 5 3 q  5 (B11 ) 

where the coefficients d0, a2, and a4 are determined by (B5)-(B7)  with 
G ( q )  - 1. 
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